

IS SR TO39

1. Package Dimension

Unit: mm

Package Material		
CAP	Cu plating Ni	
BASE	Cu plating Ni	

Pin No. Function

- 1. Input
- 2. Output
- Ground

2. Marking

IS SR	ltem <u>code</u>		
433M92	Frequency		

3. Performance

3.1 Application

One-port SAW Resonator for Wireless Remote Controller. Center frequency: 433.92MHz

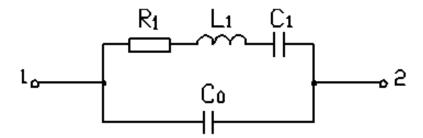
3.2 Maximum Rating

Rating	Value	Unit				
Operating Temperature Range	T _A	-40 ~ +85	°C			
Storage Temperature Range	T _{stg}	-45 ~ +85	°C			
DC Voltage (between any Terminals)	V _{DC}	10	V			
RF Power (in BW)	P	0	dBm			
ESD Voltage (HB)	V _{ESD}	150	V			

Electrostatic Sensitive Device (ESD)

3.3 Electronic Characteristics

Item	Unit	Minimum	Typical	Maximum
Center Frequency (fo)	MHz	433.845	433.920	433.995
Insertion Loss	dB	_	1.5	2.5
Quality Factor	1	_	_	_
Unloaded Q	-	_	12,800	_
50Ω Loaded Q	_	_	2,000	_
Temperature Stability	1	_	_	_
Turnover Temperature		20	35	50
Turnover Frequency	KHz	_	f ₀ ±1.3	_
Frequency Temperature Coefficient	ppm/□2	_	0.032	_
Frequency Aging	ppm/yr	_	<±10	_
DC Insulation Resistance	МΩ	1.0	_	_
RF Equivalent RLC Model	_	_	_	_
Motional Resistance R ₁	Ω	_	18	26
Motional Inductance L ₁	μΗ	_	86	_
Motional Capacitance C ₁	fF	_	1.5	_
Pin1 to Pin2 Static Capacitance C₀	pF	1.7	2.0	2.3
Transducer Static Capacitance C₀	pF	_	1.9	_



Erdinger Straße 45

3.3 Equivalent LC Model

4. Performance

4.1 Mechanical Shock:

The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s2, duration 6 milliseconds.

4.2 Vibration Fatigue:

The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

4.3 Terminal Strength:

The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

4.4 High Temperature Storage:

The components shall remain within the electrical specifications after being kept at the $85^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for 16 hours, then kept at room temperature for 2 hours.

4.5 Low Temperature Storage:

The components shall remain within the electrical specifications after being kept at the $-20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for 16 hours, then kept at room temperature for 2 hours.

4.6 Temperature Cycle:

The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80°C for 30 minutes → 25°C for 5 minutes → -40°C for 30 minutes) than kept at room temperature for 2 hours.

4.7 Humidity Test:

The components shall remain within the electrical specifications after being kept at the condition of ambient temperature 40 ± 2°C, and 90~95% RH for 48 hours, then kept at room temperature and normal humidity for 2 hours.

4.8 Solder-heat Resistance:

The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10±1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

4.9 Solderability:

Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at $245^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5 ± 1 seconds.

5. Remarks

5.1 Static voltage:

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

5.2 Ultrasonic cleaning:

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

5.3 Soldering:

Only leads of component may be soldered. Please avoid soldering another part of component.

Erdinger Straße 45